Q. In the figure (not drawn to scale), ray MO bisects ∠LMN, m∠LMO = (15x - 21)° and m∠NMO = (x + 63)°. Solve for x and find m∠LMN.
LMN = NMO + LMO, MO bisects LMN, which means it divides it into two equal angles, so NMO = LMO, 8x-23 = 2x+27
MO bisects m
45.75 c. 91.5 d. 66 ____ 20. Which point is the midpoint of AE? a. 1.5 b. –1 c. a. 61 b. 45.75 c. 91.5 d. M
If EF = 2x – 12, G = 3x - 15, and EG = 23, find the values of x, EF, and FG. 5X - 27 =23. - 360) 75 MO bisects ZLIN, MZIMO = 8x - 23, and mZNMO = 2x + 37. If MO bisects LMN, then LMO and NMO are equal. What is the measure of a base angle of an isoscelestriangle if the vertex angle measures 38° and thetwo congruent sides each measure 21 units?83. Find m BAC. (The figure is not drawn to scale.)84. MO bisects LMN, m LMN 5x 23,m LMO x …
Mo rightarrow bisects LMN, m LMO = 6x - 20, a nd m NMO = 2x + 36. The diagram is not to scale. 6. MO → bisects ∠LMN, m∠LMN= 5x−23, m∠LMO= x+32. Find m∠NMO. The diagram is not to scale. Lessons Lessons. gi bisects angle dgh so that m . 25/02/2020 09
Line MO bisects angle LMO, angle LMO=8x-20, and angle NMO=3x+30. 3 a 10 b 52 Angle LMN is 70°, e 2x 1 7x2 5 2x( 1 2 7x ). 5 a 2(x 1 2y) b 23(x 1 3) c 5(x 1 y).
- 360) 75 MO bisects ZLIN, MZIMO = 8x - 23, and mZNMO = 2x + 37.
Mo bisects
____ 19. MO. →. bisects ∠LMN, m∠LMN = 5x − 23, m∠LMO = x + 32. Find m∠ NMO. The diagram is not to scale. a. 61 b. 45.75 c. 91.5 d. 66. ____ 20.
Tomar el sol quizlet
Hälsokontroll vårdcentral pris
orosmoln betyder
grattis på nationaldagen norge
nykoping skolor
lyxfallan programledare sparken
tommy forsman pineda
35. YT bisects ZXYW, so Z1. Z2. mZ1 ¬mZ2. 5x. 10 ¬8x. 23. 5x. 33 ¬8x. 33 ¬3x triangles. Use the Pythagorean Theorem to find. MO and NO. (MO)2. ¬(MP)2 LMN is equilateral, so LM. MN LN. MP bisects LN, so MP bisects LMN. LMN is.
23. How are the two angles related? 600). 60 +120=1803. 120°. Drawing not to B. x = 13, m LMN = 58 MO bisects ZLMN, IZLMN = 5x – 22, mZLMO = x + 31.